
DERIVATIONS ON THE ALGEBRA OF RAJCHMAN

MEASURES

MAHYA GHANDEHARI

Abstract. For a locally compact Abelian group G, the algebra of Rajchman

measures, denoted by M0(G), is the set of all bounded regular Borel measures
on G whose Fourier transform vanish at infinity. In this paper, we investigate

the spectral structure of the algebra of Rajchman measures, and illustrate

aspects of the residual analytic structure of its maximal ideal space. In partic-
ular, we show that M0(G) has a nonzero continuous point derivation, whenever

G is a non-discrete locally compact Abelian group. We then give the defini-

tion of the Rajchman algebra for a general (not necessarily Abelian) locally
compact group, and prove that for a non-compact connected SIN group, the

Rajchman algebra admits a nonzero continuous point derivation. Moreover,

we discuss the analytic behavior of the spectrum of M0(G). Namely, we show
that for every non-discrete metrizable locally compact Abelian group G, the

maximal ideal space of M0(G) contains analytic discs.
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1. Introduction

Let G be a locally compact group. The measure algebra of G, denoted by
M(G), is the Banach ∗-algebra of bounded complex Radon measures on G. A
measure µ in the measure algebra of a locally compact Abelian group is called
a Rajchman measure if its Fourier-Stieltjes transform vanishes at infinity. The
importance of Rajchman measures first became apparent in the study of uniqueness
of trigonometric series. A subset E of T is a set of uniqueness (or a U-set) if the
trivial series is the only trigonometric series which converges to 0 on every element
outside E. Sets of uniqueness are typically small. In fact, every Borel U-set has
Lebesgue measure zero. However the converse is not true. In 1916, Menshov
showed that there are closed sets of Lebesgue measure zero which are not sets of
uniqueness [31]. In his proof, Menshov constructed a Rajchman measure µ which
does not belong to L1(T).

The collection of all Rajchman measures on a locally compact Abelian group G
forms a Banach subalgebra of M(G), which we denote by M0(G). The algebra of
Rajchman measures motivated the definition of the Rajchman algebra for general
(not necessarily Abelian) locally compact groups. Since a non-Abelian group does
not admit a Fourier transform in the classical sense, non-commutative harmonic
analysis has been instead founded upon a representation theoretic point of view
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(see [13]). In particular, the Rajchman algebra of a locally compact group G, de-
noted by B0(G), is defined as the collection of all coefficient functions associated
with unitary representations of G which vanish at infinity. If G is Abelian, the
Fourier-Stieltjes transform maps M0(G) onto the Rajchman algebra of the dual
group. The significance of the Rajchman algebra is due to the fact that under-
standing the asymptotic behavior of unitary representations is important because
of its applications in other areas of mathematics such as the theory of automorphic
forms and ergodic properties of flows on homogeneous spaces (e.g. see [21], [32], and
[37]). The Rajchman algebra of a locally compact (not necessarily Abelian) group
has been studied by several researchers over the past few decades (for example see
[2, 3, 4, 17, 28, 27, 26]).

In this paper, we investigate Banach algebraic features, in particular amenabil-
ity properties and spectral behavior, of the Rajchman algebra of a locally compact
group. Amenability of a group is a fundamental notion that was originally in-
troduced by von Neumann in 1929. In 1972, Johnson defined amenable Banach
algebras as those on which no nontrivial, yet sensible, continuous derivatives can
be defined (see [22] for the precise definition). This cohomological notion turned
out to be very fruitful, and has been studied extensively. For several important
classes of Banach algebras, amenability identifies the ones with “good behavior”.
For example, Connes [10] and Haagerup [19] showed that for C∗-algebras amenabil-
ity and nuclearity coincide. Johnson’s well-known theorem characterizing amenable
L1-algebras [23], and Forrest and Runde’s characterization of amenable Fourier al-
gebras [15] are other instances of this phenomenon. We refer the reader to [35] for
a detailed account on amenability of Banach algebras.

Over the past few decades, deeper investigation of amenability-type properties
of Banach algebras associated with locally compact groups, including the Fourier
algebra and Rajchman algebra, has become a vibrant trend of research in abstract
harmonic analysis (e.g. see [1, 11, 12, 14, 15, 29, 36]). One of the important and
fundamental questions here is the existence and construction of derivations for these
algebras. The derivation problem is of great importance, as it sheds substantial light
on the structure of the algebra, and then in turn on the underlying group. As an
important example, the still open question of characterizing groups whose Fourier
algebras do not have non-zero symmetric derivatives has attracted a lot of attention
(see [8, 9, 15, 16, 25, 30]).

Amongst all derivations, point derivations play a particularly important role.
However, examples of point derivations are rare, and except in a few basic in-
stances we do not know how to construct them. In this paper, we investigate the
spectral structure of Rajchman algebras, and illustrate aspects of the residual an-
alytic structure of their maximal ideal space. When G is Abelian, the algebra of
Rajchman measures M0(G) is a commutative convolution measure algebra, i.e. it
has a natural lattice structure which is compatible with its Banach algebra struc-
ture. In [38], Taylor showed that one can construct analytic discs in the spectrum
of a convolution measure algebra around any element with non-idempotent mod-
ulus. It is now interesting to study the possibilities for elements of the spectrum
whose modulus are idempotent. In [6] , Brown and Moran constructed nontrivial
continuous point derivations for M(G) at the discrete augmentation character. In
a subsequent paper, they used a method of Varopoulos to construct analytic discs
around the discrete augmentation character (see [7]). In the present article, we use a
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suitable decomposition of M0(G) to develop analogues results for the spectrum and
derivations of M0(G). In particular, we obtain analytic discs around certain idem-
potent characters of M0(G), when G is a non-discrete metrizable locally compact
Abelian group.

Our methods and constructions in this paper are based on the notion of strongly
independent sets. In his rather difficult and technical paper [40], Varopoulos proved
that if G is a non-discrete metrizable locally compact Abelian group, then there
exists a perfect strongly independent subset P of G such that M+

0 (P ) 6= {0}.
Moreover, as explained in [17], it is easy to see that one may assume P to be
compact. Such independent sets may be used to analyze the measure algebra of
a locally compact group and its subalgebras. For example, in [39], Varopoulos
obtains a direct decomposition of the algebra of continuous measures Mc(G), and
hence the measure algebra M(G), of a non-discrete locally compact Abelian group
G, through a very careful use of geometric and measure theoretic features of strongly
independent sets. As a consequence of this decomposition theorem and its extension
to M0(G), it was shown in [17] that the Rajchman algebra does not have a bounded
approximate identity if G is a non-compact connected SIN group. The above-
mentioned decomposition theorem also sheds light on the cohomology of M0(G)
as a Banach algebra. In particular, it was shown in [17] that if G is non-discrete
and Abelian, then M0(G) admits a nonzero continuous derivation into a symmetric
bimodule. It is then natural to ask whether M0(G) admits a nonzero continuous
point derivation, i.e. one into a one-dimensional symmetric bimodule. In this
article, we answer this question affirmatively.

This paper is organized as follows. In Section 2, we present the necessary notation
and background. In particular, we give a very brief overview of the decomposition
of M(G), and respectively M0(G), developed by Varopoulos in [39]. We finish this
section by a quick introduction on derivations on Banach algebras. In Section 3, we
discuss the analytic behavior of the spectrum of M0(G). Namely, we show that for
every non-discrete metrizable locally compact Abelian group G, the maximal ideal
space of M0(G) contains an analytic disc. Inspired by the construction of analytic
discs, we prove in Section 4 that M0(G) has a nonzero continuous point derivation,
if G is a non-discrete locally compact Abelian group. We then give the definition
of the Rajchman algebra of a non-Abelian locally compact group, and extend the
result for Abelian groups to the case of SIN groups.
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2. A decomposition theorem for M0(G)

Notations and key definitions. Let G be a locally compact group with Haar
measure λG. The group algebra of G, denoted by L1(G), is the Banach ∗-algebra
of integrable functions on G equipped with pointwise addition and convolution
product. Let M(G) denote the Banach ∗-algebra of bounded regular Borel measures
on G, equipped with the total variation norm, where the convolution product of
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two measures µ and ν in M(G) is defined to be∫
G

f(z)d(µ ∗ ν)(z) =

∫
G

∫
G

f(xy)dµ(x)dν(y),

for every f in Cc(G), the set of compactly supported continuous functions on G.
The measure algebra M(G) contains L1(G) as a closed ideal. Let Mc(G) denote
the set of all continuous measures in M(G), i.e. the set of complex bounded Radon
measures on G which annihilate every singleton. Two measures µ and ν in M(G)
are called mutually singular, denoted by µ⊥ν, if there exists a partition A∪B of G
such that µ is concentrated in A and ν is concentrated in B. We say µ is absolutely
continuous with respect to ν, denoted by µ � ν, if for every measurable set A for
which |ν|(A) = 0, we have |µ|(A) = 0 as well.

For the rest of this article, we assume that G is an Abelian locally compact

group, unless otherwise is stated. Let Ĝ denote the Pontryagin dual of G, i.e.
the group consisting of all continuous homomorphisms from G into T, together
with the natural group operations and the compact-open topology (i.e. uniform

convergence on compact sets). It turns out that Ĝ is a locally compact Abelian
group as well. The Fourier transform of G is the norm-decreasing ∗-homomorphism

F : L1(G)→ C0(Ĝ) defined as

Ff(χ) =

∫
G

f(x)χ(x)dλG(x).

Let Cb(G) denote the Banach ∗-algebra of bounded continuous functions on G.
The Fourier transform can be extended to the Fourier-Stieltjes transform, which is

again a norm-decreasing ∗-homomorphism defined as FS : M(G)→ Cb(Ĝ),

Fµ(χ) =

∫
G

χ(x)dµ(x),

for every µ ∈ M(G). See [34] for a beautiful exposition on Fourier analysis of
Abelian groups.

The algebra of Rajchman measures of G, denoted by M0(G), is the collection of
all measures in M(G) whose Fourier transforms vanish at infinity. For a measurable
subset E of G, define Mc(E) (respectively M0(E)) to be the set of all measures
in Mc(G) (respectively M0(G)) which are supported in the set E. It is easy to
see that Mc(G) and M0(G) are closed ideals of M(G), and M0(G) is contained in
Mc(G). It turns out that M0(G) is also “closed” in the sense of absolute continuity,
as formalized below.

Definition 2.1. A closed subspace B of M(G) is called an L-space if for every
µ, ν ∈M(G) satisfying ν ∈ B and µ� ν, we have µ ∈ B.

We remark that L-spaces are sometimes referred to as “bands”, for example this
is the terminology used in [39]. We refer the reader to [5] for more information on
L-spaces. In the following lemma, we give an equivalent definition of an L-space,
where “�” is replaced by “≤”.

Lemma 2.2. Let B be a closed subspace of M(G). Then B is an L-space if and
only if it satisfies the following condition:

(1) If µ, ν ∈M(G), ν ∈ B, and |µ| ≤ |ν|, then µ ∈ B.
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Proof. First assume that B is an L-space. Note that for measures µ and ν in
M(G), the inequality |µ| ≤ |ν| clearly implies µ� ν, just by definition. Therefore
B clearly satisfies Condition (1) as well.

Conversely, assume that B is a closed subspace of M(G) that satisfies Condi-
tion (1). Suppose µ, ν ∈ M(G) and ν ∈ B. First note that by Condition (1), |ν|
belongs to B as well. Now assume that µ � ν, i.e. |µ| � |ν|. So, by Radon-
Nikodym Theorem, there exists a non-negative Borel integrable function f such
that |µ| = f |ν|. For each n ∈ N, let fn be defined by

fn(x) =

{
f(x) if f(x) ≤ n
n otherwise

.

Note that fn|ν| ≤ n|ν|, which implies that fn|ν| belongs to B. On the other hand,
by monotone convergence theorem,

‖f |ν| − fn|ν|‖M(G) = (f |ν| − fn|ν|)(G) =

∫
G

fd|ν| −
∫
G

fnd|ν| → 0.

Therefore f |ν|, being the limit of fn|ν|’s, belongs to B as well. �

In the following lemma, we list some easy properties of L-spaces, that we will
use in future.

Lemma 2.3. Let B be an L-space in M(G), and µ ∈M(G).

(a) If µ ∈ B then |µ| ∈ B and Rµ, Iµ ∈ B, where Rµ and Iµ denote the real
and imaginary parts of the measure µ.

(b) If |µ| ∈ B then µ ∈ B.

Proof. (a) Suppose µ ∈ B. From the definition of an L-space, it is clear that
|µ|, Rµ and Iµ belong to B as well, since these measures are all absolutely
continuous with respect to µ.

(b) This follows trivially from the definition of an L-space.
�

It is known that M0(G) is a translation-invariant L-subspace of M(G) (for ex-
ample see [18] for a proof). This important feature of M0(G) will be used in future
extensively. In the following lemma, we use properties of L-spaces to give an easy
proof of the well-known fact that M0(G) is contained in Mc(G).

Lemma 2.4. For a non-discrete locally compact Abelian group G, M0(G) ⊆Mc(G).

Proof. Suppose M0(G) *Mc(G) and let µ ∈M0(G)\Mc(G). Note that by Lemma
2.3, the real and imaginary components of µ, denoted by Rµ and Iµ, belong to
M0(G) as well. Moreover, at least one of Rµ or Iµ is not a continuous measure,
otherwise µ ∈ Mc(G). Hence without loss of generality, we can assume that µ is
a real measure. Let µ = µ1 + µ2 be the orthogonal decomposition of µ into µ1 in
Mc(G) and 0 6= µ2 in ∆(G), where ∆(G) is the subalgebra of M(G) consisting of all
discrete measures on G. Clearly µ2 � µ, which implies that µ2 belongs to M0(G).
Thus, there exists some g in G so that the point mass δg belongs to M0(G) as well.

However, |δ̂g(χ)| = |χ(g)| = 1 for every χ ∈ Ĝ, which is a contradiction with the
definition of M0(G). Here, we used the well-known fact that if G is non-discrete

then its dual group Ĝ is non-compact. �
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Strongly independent sets. Throughout this section, we assume that G is a
locally compact Abelian group, and we present a very brief overview of the decom-
position of M(G), and respectively M0(G), developed by Varopoulos in [39]. We
begin by the definition of a strongly independent set, which is the main tool for
analysis and constructions in [39]. We refer the reader to [39] for more details and
proofs on this topic.

For a subset P of a locally compact Abelian group G, let k(P ), called the torsion
of P , denote the smallest positive integer k such that {kx : x ∈ P} = {0G}, if such
an integer exists. Otherwise, set k(P ) =∞. A reduced sum on a subset P of torsion
k(P ) is a formal expression

∑
i∈I ṅipi, where I is a possibly empty finite index set,

pi’s are distinct elements of P , and

0 6= ṅi ∈ Z(mod k(P )).

Definition 2.5. A subset P ⊆ G is called strongly independent if for any positive
integer N , any family {pj}Nj=1 of distinct elements of P , and any family of integers

{nj}Nj=1, the equality
∑N
j=1 njpj = 0G implies that nj is a multiple of k(P ) for each

1 ≤ j ≤ N , unless k(P ) =∞, in which case nj = 0 for each 1 ≤ j ≤ N .

Let Gp(P ) denote the group generated by P in G. The computational advantage
of a strongly independent set P lies in that fact that every x in Gp(P ) can be
expressed uniquely (up to permutation) as a reduced sum. Note that if G is a
non-discrete locally compact Abelian group then G has a perfect metrizable subset
P which is strongly independent [40]. Moreover, if G is metrizable as well, we
can assume that the above-mentioned subset P satisfies the additional condition
M+

0 (P ) 6= {0}, as stated in the following theorem.

Theorem 2.6. [40] Let G be a non-discrete metrizable locally compact Abelian
group. Then there exists a perfect strongly independent subset P of G so that

M0(P ) :=
{
µ ∈M0(G) : supp(µ) ⊆ P

}
6= {0}.

The proof of the above theorem is rather difficult and technical. In fact, the
argument in [40] relies on structural theorems and treatment of some special groups.
A weaker version of Theorem 2.6 was proved by Rudin in [33] for the special case
where G = T. The following lemma is an easy consequence of Theorem 2.6 together
with measure-theoretic features of M0(G), and will be used to construct nonzero
continuous point derivations on M0(G) later on.

Lemma 2.7. Let G be a non-discrete metrizable locally compact Abelian group.
Then there exists a compact perfect strongly independent subset P of G such that
M+

0 (P ) 6= {0}.

Proof. By Theorem 2.6 there exists a perfect metrizable strongly independent sub-
set P ′ of G which supports a nonzero Rajchman measure µ0. It is known that
M0(G) is an L-space [18]. Therefore by Lemma 2.3, without loss of generality we
can assume that µ0 is a positive measure. Since µ0(P ′) > 0 and µ0 is a Radon
measure, there exists a compact subset K of P for which µ0(K) > 0. Note that
µ0|K is a positive measure supported in K and dominated by µ0. So by Lemma
2.2, µ0|K belongs to M0(K) = M0(G) ∩M(K). Moreover, supp(µ0|K) is still a
perfect set, because µ0|K is a continuous measure according to Lemma 2.4. Let
P = supp(µ0|K). Clearly P is a strongly independent set, since it is a subset of the
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strongly independent set P ′. Hence P is a compact perfect strongly independent
subset of G with M0(P ) 6= {0}. �

A decomposition of M(G) and M0(G). Let G be a non-discrete metrizable lo-
cally compact Abelian group. Fix a strongly independent compact perfect metriz-
able subset P of G which satisfies M0(P ) 6= {0}. For every n ∈ N, let Bn denote
the L-space generated by products of n elements of Mc(P ), i.e.

Bn =
{
µ ∈M(G) : µ� µ1 ∗ . . . ∗ µn for some µ1, . . . , µn ∈Mc(P )

}
.

Clearly, Bn is an L-subspace of M(nP ) for every n ∈ N. Using geometric and
measure theoretic properties of strongly independent sets, it was shown in [39] that
δg ∗ Bn ⊥ δg′ ∗ Bm whenever (n, g) 6= (m, g′), n,m ∈ N, and g, g′ ∈ G (see Lemma
3.1 of [39] for the proof). The L-spaces Bn are used as building blocks for the
following decomposition of M(G).

Theorem 2.8. [39] Let G be a non-discrete locally compact Abelian group, and P
be a perfect metrizable strongly independent subset of G. Let Π = ⊕g∈G,n∈Nδg ∗Bn
and I = Π⊥ ∩Mc(G). Then

• Π is a translation-invariant L-subspace of Mc(G), which is a closed subal-
gebra as well.
• I is an ideal and L-subspace of M(G).
• One can decompose Mc(G) as Mc(G) = Π ⊕ I (direct and orthogonal de-

composition).

We remark that the strongly independent set P plays a crucial role in the above
theorem. Indeed, to guarantee the orthogonality of blocks in Π, it is necessary to
use components of the form Bn rather than the whole space Mc(nP ). In fact, it
is not even true that “Mc(g1 + nP ) ⊥ Mc(g2 + mP ) for (g1, n) 6= (g2,m)”. For
instance, if q is an element of P then q + P ⊆ 2P and Mc(q + P ) ⊆Mc(2P ).

To study the spectrum of the algebra of Rajchman measures, we need analogue
decompositions for M0(G), which was not explicitly stated in [39]. So, we present
the proof of the following theorem, which relies heavily on Theorem 2.6 and Theo-
rem 2.8.

Theorem 2.9. Let G be a non-discrete metrizable locally compact Abelian group.
There exists a perfect metrizable strongly independent subset P of G for which the
decomposition of Mc(G) as in Theorem 2.8, gives a nontrivial decomposition of
M0(G), i.e.

M0(G) = Π0 ⊕ I0,
where Π0 = Π∩M0(G) is a closed subalgebra and I0 = I ∩M0(G) is an ideal of the
Banach algebra M0(G). In addition, both Π0 and I0 are nontrivial L-subspaces of
M(G).

Proof. Since G is a non-discrete metrizable locally compact Abelian group, Theo-
rem 2.6 guarantees a perfect metrizable strongly independent subset P of G such
that M0(P ) 6= {0}. Let µ be an element of M0(G). Since M0(G) is a subset of
Mc(G), we can decompose µ into an orthogonal sum

µ = µ1 + µ2,

with µ1 ∈ Π and µ2 ∈ I. Note that |µ1| � |µ| and |µ2| � |µ|. Therefore µ1 and µ2

belong to M0(G), since M0(G) is an L-space containing |µ|. Thus, M0(G) = Π0⊕I0.
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We now need to show that the decomposition is nontrivial. First note that
Π0 6= {0}, since {0} 6= M0(P ) ⊆ Π0. To show I0 6= {0}, let µ ∈ M+

0 (G), and pick
a positive measure ν ∈ I. (Note that such measures exist, as M0(G) and I are
non-trivial L-spaces). Let E and F be compact subspaces of G such that µ(E) > 0
and ν(F ) > 0. Then,

µ ∗ ν(E + F ) =

∫
G

∫
G

χE+F (x+ y)dµ(x)dν(y)

≥
∫
G

∫
G

χE(x)χF (y)dµ(x)dν(y) = µ(E)ν(F ) > 0.

This finishes the proof, as I0 contains µ ∗ ν. �

Derivatives on Banach algebras. Let A be a Banach algebra, and X be a
Banach space. The space X is a Banach A-bimodule if it is an A-bimodule whose
module actions are continuous, i.e. there exists a positive constant K such that

‖a · x‖ ≤ K‖a‖‖x‖ and ‖x · a‖ ≤ K‖x‖‖a‖,
for every x in X and a in A. A bounded linear map D from A to an A-bimodule
X is called a derivation if for all a and b in A,

D(ab) = D(a) · b+ a ·D(b).

Let A be a commutative Banach algebra, and φ be a character on A, i.e. an algebra
homomorphism from A into C. Then, one can turn C into a Banach A-bimodule,
which will be denoted by Cφ, using the following natural left and right module
actions:

a · λ = φ(a)λ = λ · a.
A derivation D from A to Cφ is called a point derivation. The following hereditary
property will allow us to drop the condition of “metrizability” for our main theorem.

Theorem 2.10. (Hereditary properties) Let A and B be Banach algebras. Let
α be a surjective homomorphism from A to B, and X be a Banach B-bimodule. If
D : B → X is a derivation, then

(i) X is a Banach A-bimodule, when equipped with the module actions

a ·A x := α(a) · x, x ·A a := x · α(a), for every a ∈ A, x ∈ X.
(ii) The composition map D ◦ α is a derivation of A into the A-module X.

Corollary 2.11. Let α be a surjective homomorphism from A to B, where A and
B are commutative Banach algebras. . If B admits a nonzero point derivation, then
A will admits such a derivation as well.

The above theorem is very easy to prove. We refer the reader to [20] for a
comprehensive treatment of derivations on Banach algebras.

3. Analytic discs in the spectrum of M0(G)

Let G be a non-discrete locally compact Abelian group. It is known that the

maximal ideal space of L1(G) can be identified with Ĝ, the character group of G.
In analogy with this result, Taylor described the maximal ideal space of M0(G)

as the set Ŝ of all semicharacters of a certain compact topological semigroup S
(see [38]). A semicharacter of a topological semigroup S is a nonzero continuous
function of norm at most 1 that satisfies f(st) = f(s)f(t) for every s, t ∈ S. We use
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the dual pairing 〈s, φ〉 to denote the action of φ ∈ Ŝ on s ∈ S. In its general form,
Taylor’s result describes the spectrum of any convolution measure algebra, i.e. a
closed subalgebra of M(G) which is also an L-space.

Theorem 3.1. [38] Let M be a commutative convolution measure algebra with
maximal ideal space ∆. Then there exists a compact Abelian topological semigroup
S and a map

ι : Ŝ → ∆

such that ι is a bijection, and Ŝ separates the points of S.

Definition 3.2. The semigroup S introduced in Theorem 3.1 is called the structure
semigroup of M.

For the rest of this article, S denotes the structure semigroup of a convolution

measure algebra M with maximal ideal space ∆. Every element of Ŝ admits a
polar decomposition as in Lemma 3.3. To obtain this decomposition, define

H =
{
f ∈ Ŝ : |f(s)| = 0 or 1 for all s ∈ S

}
.

For every f ∈ Ŝ, let supp(f) := {s ∈ S : f(s) 6= 0}. The support of f is an open
compact sub-semigroup of S whose complement is an ideal (see Lemma 3.2 and its

corollary in [38]). We can now state the polar decomposition in Ŝ.

Lemma 3.3 (Lemma 3.3 of [38]). If f ∈ Ŝ, then |f | ∈ Ŝ. Moreover, there exists a
unique h ∈ H such that f = |f |h and supp(f) = supp(h).

LetM be a convolution measure algebra with maximal ideal space ∆ and struc-
ture semigroup S. An analytic disc in the maximal ideal space ∆ is an injection ψ
of the open unit disc of C into ∆ such that e(µ) ◦ ψ is holomorphic for every µ in
M. Here, e(µ) denotes the function which evaluates every element of ∆ at µ. It is
easy to see that for a semicharacter φ, if |φ| is not an idempotent then there exists
an analytic disc around φ. Indeed, let φ = |φ|hφ be the polar decomposition of φ.
Then the map z 7→ |φ|zhφ is a vector-valued analytic map from {z ∈ C : Rez > 0}
to Ŝ. We recall the following result from [7], and present a more detailed proof.

Corollary 3.4. Let M be a convolution measure algebra with structure semigroup

S. Let φ be an element of Ŝ such that |φ| is not an idempotent. Then M admits a
point derivation at φ.

Proof. Note that for each µ in M, the map z 7→ 〈µ, |φ|zhφ〉 is a complex-valued
analytic function on {z ∈ C : Rez > 0}. We then define

D :M→ C, D(µ) =
d

dz
(〈µ, |φ|zhφ〉)|z=1.

It is easy to check that D is a continuous point derivation on M at the character
φ. Moreover, using the polynomial expansion of z 7→ |φ|zhφ around z = 1 and the
Gelfand representation of M, we see that D is nonzero. �

Taking the above discussion into account, constructing φ-derivations is a non-
trivial (and in most cases even challenging) task, only when |φ| is an idempotent.
For the special case of M(G) and the discrete augmentation character h, Brown
and Moran have constructed nontrivial continuous point derivations at h (see [6]).
Later on, they used a method of Varopoulos to construct analytic discs around h
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in the maximal ideal space of M(G). Inspired by those results, we will obtain par-
allel constructions for the algebra of Rajchman measures. Especially, we construct
analytic discs around certain idempotent characters of M0(G).

We use the following scheme, which is inspired by the method Brown and Moran
have developed for the case of measure algebras [7]. Let M0(G) = I ⊕ A be a
decomposition of M0(G) where I is an L-ideal and A is an L-subalgebra. Clearly

(2) h(µ) =

{
0 µ ∈ I

µ(G) µ ∈ A

is a character on M0(G), since I is an ideal of M0(G). Suppose that there exist
mutually orthogonal L-subspaces A = B0, B1, B2, . . . of M0(G) such that

(i) B1 6= {0},
(ii) If µ ∈ Bn and ν ∈ Bm then µ ∗ ν ∈ Bm+n for all positive integers m,n,(3)

(iii) (⊕∞n=0Bn)⊥ is an L-ideal of M0(G).

For z in D and µ in M0(G), define

(4) 〈µ, φ(z)〉 =

{ ∫
G
zndµ µ ∈ Bn
0 µ ∈ (⊕∞n=0Bn)⊥

,

where we use the convention 00 = 1. One can easily verify that φ(z) is an element
of the maximal ideal space of M0(G), and φ(0) = h. Hence φ is an analytic disc
around h.

Proposition 3.5. For every non-discrete metrizable locally compact Abelian group
G, the maximal ideal space of M0(G) contains an analytic disc.

Proof. Following the above argument, we only need to find a nontrivial decomposi-
tion M0(G) = A⊕ I and pairwise orthogonal L-subspaces B0, B1, . . . as described
earlier. Note that in a metrizable space, every perfect strongly independent com-
pact set K is totally disconnected, and is therefore homeomorphic to a standard
Cantor set. Hence we can split any such K into subsets K1 and K2, so that each
component is again compact, perfect, and strongly independent. Moreover, we can
choose K1 and K2 such that both M0(K1) and M0(K2) are nontrivial.

Let K1, K2 and K1∪K2 be perfect metrizable strongly independent compact sub-
sets of G constructed as above, such that M0(K1) and M0(K2) are both nontrivial.
By Theorem 2.9, we can use the set K1∪K2 to decompose the algebra of Rajchman
measures as M0(G) = (Π ∩M0(G))⊕ (IΠ ∩M0(G)), where Π = ⊕g∈G,n∈Nδg ∗ Cn,
and

Cn =
{
µ ∈M(G) : µ� µ1 ∗ . . . ∗ µn for some µ1, . . . , µn ∈Mc(K1 ∪K2)

}
.

We will refine this decomposition, and obtain the structure presented in (3) as
follows. First, we apply Theorem 2.9 again, this time with the strongly independent
set K1, to get the decomposition M0(G) = A⊕ I, where

A =

 ⊕
g∈G,n∈N

δg ∗ C1
n

 ∩M0(G),(5)

C1
n =

{
µ ∈Mc(G) : µ� µ1 ∗ . . . ∗ µn for some µ1, . . . , µn ∈Mc(K1)

}
.(6)
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Let B0 = A, and for each n ∈ N, let Bn be the translation-invariant L-space defined
as

Bn =

 ⊕
g,g′∈G

δg ∗ C2
n ⊕ δg′ ∗ C3

n

 ∩M0(G),

where

C2
n =

{
µ ∈M(G) : µ� µ1 ∗ . . . ∗ µn ∗ ν, µ1, . . . , µn ∈Mc(K2), ν ∈ A

}
,

C3
n =

{
µ ∈M(G) : µ� µ1 ∗ . . . ∗ µn, µ1, . . . , µn ∈Mc(K2)

}
.

We now observe that {Bn}n≥0 is a collection of mutually orthogonal translation-
invariant L-spaces. Indeed, we show that for any x, y, x′, y′ ∈ G and positive
integers m and n, we have

(i) δx ∗ C1
n and δy ∗ C2

m ⊕ δy′ ∗ C3
m are orthogonal.

(ii) δx ∗C2
n ⊕ δx′ ∗C3

n and δy ∗C2
m ⊕ δy′ ∗C3

m are orthogonal, whenever n 6= m.

Note that δx ∗ Cn and δy ∗ Cm are orthogonal when (x, n) 6= (y,m) (see Lemma
3.1 of [39]). So δx ∗ C1

n and δy ∗ C3
m are clearly orthogonal when n 6= m or x 6= y.

Thus to settle the question of orthogonality of δx ∗C1
n and δy ∗C3

m, we only need to
discuss the case where n = m and x = y. First observe that every element of δx∗C1

n

is supported in x + nK1, and every measure in δx ∗ C3
n is supported in x + nK2.

Consider an element z of the intersection (x+ nK1) ∩ (x+ nK2) written as

(7) z = x+ k1 + . . .+ kn = x+ k′1 + . . .+ k′n,

where k1, . . . , kn ∈ K1, k
′
1, . . . , k

′
n ∈ K2. After canceling the term x from both sides,

and writing each sum in reduced form, we get

z − x = t1ki1 + . . .+ tskis = t′1k
′
j1 + . . .+ t′pk

′
jp ,

where t1, . . . , ts, t
′
1, . . . , t

′
p ∈ N and i1, . . . , is, j1, . . . , jp ∈ {1, . . . , n}. Since K1 and

K2 are disjoint, the above equation gives two distinct representations of an element
in Gp(K), if the sum t′1k

′
j1

+ . . . + t′pk
′
jp

contains any term from K2. Since K is

a strongly independent set, we conclude that k′1 must have been repeated (with
repetition number equal to a multiple of its torsion) in Equaion (7). Therefore

(x+ nK1) ∩ (x+ nK2) ⊆ x+Rn,

where Rn is the subset of nK defined as

Rn =
{
x1 + . . .+ xn : x1, . . . , xn ∈ K, and xi = xj for some 1 ≤ i < j ≤ n

}
.

For µ1, . . . , µn ∈Mc(K), we can easily verify that δx ∗ µ1 ∗ . . . ∗ µn(Rn) = 0. Thus,
δx ∗C1

n and δx ∗C3
n are orthogonal. A similar discussion settles the cases involving

C2
n, and finishes the proof of orthogonality.
We now use the collection {Bn}n≥0 to construct an analytic disc in the spectrum

of M0(G). It is clear that Bn’s satisfy the first two conditions of (3). Moreover,
it is easy to see that

⊕
n≥0Bn = Π ∩M0(G), and by Theorem 2.9, its orthogonal

complement is an L-ideal. So every condition of (3) is satisfied, and by Lemma 1 of
[7], there exists an analytic disc (given in Equation (4)) in the spectrum of M0(G),
whose center is the idempotent h in (2) associated with the decomposition A ⊕ I
coming from K1. �
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4. Point derivations on M0(G)

In this section, we construct nonzero point derivations on the algebra of Rajch-
man measures associated with non-discrete locally compact Abelian groups. Our
methods and constructions are inspired by previous work of Brown and Moran [6],
in which they obtain nonzero continuous point derivations on the measure algebra
of a non-discrete locally compact Abelian group. Their construction is based on the
decomposition of the measure algebra of a locally compact group into its discrete
and continuous parts. Given that the “discrete-continuous” decomposition trivial-
izes when restricted to M0(G), we need to use the very sophisticated decomposition
of M0 given in Theorem 2.9, together with the structure presented in (3), to prove
a similar result for the algebra of Rajchman measures on a non-discrete locally
compact Abelian group (see Theorem 4.2).

The following lemma, which we will use in the proof of Theorem 4.2, has been
proved in [17] (See Lemma 3.2 and the proof of Theorem 3.3 therein). To be
self-contained, we present a summarized version of the proof here as well.

Lemma 4.1. Let G be a non-discrete locally compact Abelian group, and P be a
perfect metrizable strongly independent subset of G. Then for each µ in Mc(G), we
have

∑
x∈G µ(x+ P ) <∞.

Proof. Using the definition of a strongly independent set, it is easy to see that if x
and y are distinct elements of G then |(x + P ) ∩ (y + P )| ≤ 2 (see Lemma 3.2 of
[17] for a detailed discussion). Since µ is a continuous measure on G, it treats the
sets x+P as disjoint sets, i.e. µ((x+P )∩ (y+P )) = 0 for distinct elements x and
y in G. Hence for any finite number of points x1, . . . , xn in G,

n∑
i=1

|µ(xi + P )| ≤ |µ|(∪ni=1(xi + P )) ≤ |µ|(G) <∞.

Therefore, ∑
x∈G
|µ(x+ P )| = supI⊂G,|I|<∞

∑
x∈I
|µ(x+ P )| ≤ |µ|(G) <∞.

�

Theorem 4.2. If G is a non-discrete locally compact Abelian group, then M0(G)
has a nonzero continuous point derivation.

Proof. First assume that G is metrizable. By Lemma 2.7, there exists a compact
perfect metrizable strongly independent subset K of G which supports a nonzero
Rajchman measure µ0. Similar to our discussion in the proof of Proposition 3.5,
we can split K into K1 and K2 so that both sets are compact perfect metriz-
able strongly independent sets which support nonzero Rajchman measures. Using
Theorem 2.9, we obtain a nontrivial decomposition M0(G) = A ⊕ I, where A is
constructed with the set K1 as defined in Equation (5) and Equation (6). Precisely,

A =

 ⊕
g∈G,n∈N

δg ∗ C1
n

 ∩M0(G),
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where C1
n is the L-space generated by all possible products of n elements in Mc(K1).

Clearly {0} 6= M0(K1) ⊆ A and I 6= {0}. Next, define B1 as in Proposition 3.5, i.e.

B1 =

 ⊕
g,g′∈G

δg ∗M0(K2)⊕ δg′ ∗ C2
1

 ∩M0(G),

where C2
1 =

{
µ ∈Mc(G) : µ� µ1∗ν, µ1 ∈Mc(K2), ν ∈ A

}
. Observe that B1 ⊆ I,

and as in Proposition 3.5, we have the direct sum decomposition

M0(G) = A⊕B1 ⊕ J,
which satisfies the following lattice-type property: A ∗ A ⊆ A, A ∗ B1 ⊆ B1, but
A ∗ J , B1 ∗B1, B1 ∗ J , and J ∗ J are all subsets of J .

For each µ in M0(G), let µ = µA⊕µB1 ⊕µJ denote its decomposition according
to the above decomposition of M0. Define linear functionals χ and d to be

χ : M0(G)→ C, µ 7→ µA(G),

and
d : M0(G)→ C, µ 7→ µB1

(G).

Clearly χ is a nonzero character of M0(G), since B1 ⊕ J is an ideal and A is a
subalgebra of M0(G). By Lemma 4.1, d is a well-defined nonzero linear map which
vanishes on A and J . We now show that d is a point derivation of M0(G) at the
character χ. Fix arbitrary elements µ, ν ∈ M0(G). Using the lattice structure of
the above direct sum decomposition of M0(G) and the definition of the map d, we
have

d(µ ∗ ν) = d(µA ∗ νB1 + µB1 ∗ νA)

= (µA ∗ νB1)(G) + (µB1 ∗ νA)(G)

= µA(G)νB1(G) + µB1(G)νA(G)

= χ(µA)d(νB1) + d(µB1)χ(νA)

= χ(µ)d(ν) + d(µ)χ(ν),

which finishes the proof for the metrizable case.
For the general case, let G be a non-discrete locally compact Abelian group, and

H be a compact subgroup of G such that G/H is metrizable and non-discrete. Let
p be the quotient map from G to G/H, and p̌ be the surjective Banach algebra
homomorphism from M0(G) to M0(G/H) induced by p. By the above argument,
M0(G/H) has a nonzero continuous point derivation. Hence by Lemma 2.10, M0(G)
has a nonzero continuous point derivation as well. �

Remark. Note that choosing a different perfect compact strongly independent
subset P instead of K may result in a different decomposition for M0(G). In fact,
let K and µ0 be as in Theorem 4.2. Let P1 and P2 be disjoint perfect subsets of
K such that µ0 restricts to nonzero measures on P1 and P2 respectively. Then
for each x and y in G and integers m and n, Mc(x + mP1) and Mc(y + nP2) are
orthogonal subsets of Mc(G). This implies that the decomposition of M0(G) based
on P1 (instead of K) is different from the one that is based on P2 (instead of K).
We can now apply Theorem 4.2 to each decomposition and obtain distinct nonzero
continuous point derivations for M0(G).
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Remark. When G is a discrete locally compact Abelian group, we have L1(G) =
M(G) = M0(G). However, it has been proved that the convolution algebra L1(G)
never admits a nonzero point derivation (see [24]).

Discussion on non-Abelian groups. The Rajchman algebra of a non-Abelian
locally compact group is defined in a rather indirect way. A coefficient function of
a continuous unitary representation π : G→ U(H) associated with vectors ξ, η ∈ H
is defined as

ξ ∗π η : G→ C, g 7→ 〈π(g)ξ, η〉.
Since π is WOT-continuous, every coefficient function of π is a continuous function
on G. The Rajchman algebra of a locally compact group G, denoted by B0(G), is
defined as the collection of all coefficient functions of G which vanish at infinity.
For every u ∈ B0(G), we define ‖u‖B0(G) = inf ‖ξ‖‖η‖, where the infimum is
taken over all possible representations of u = ξ ∗π η as a coefficient function of
a continuous unitary representation of G. The Rajchman algebra, equipped with
pointwise operations, is a commutative Banach algebra. When G is Abelian, B0(G)

is isometrically isomorphic with M0(Ĝ) via the Fourier-Stieltjes transform.
One can extend Theorem 4.2 to non-compact connected SIN-groups using the

functorial properties of their Rajchman algebras in the following sense. A locally
compact (not necessarily Abelian) group is called a SIN-group if it has a neigh-
borhood basis of the identity consisting of pre-compact neighborhoods which are
invariant under inner automorphisms. This is a very natural class of groups that
contains all Abelian, all compact and all discrete groups.

If H is a closed subgroup of a SIN-group G, then the restriction map r : B0(G)→
B0(H) is surjective (see Theorem 4.3. in [17]). This fact, together with Corollary
2.11, allows us to lift any point derivation on B0(H) to a point derivation on B0(G)
as described in the following corollary.

Corollary 4.3. Let G be a non-compact connected SIN group. Then B0(G) has a
nonzero continuous point derivation.

Proof. Any non-compact connected SIN group has a copy of Rn as a closed sub-
group for some n ≥ 1. Recall that the restriction map r : B0(G) → B0(Rn) is
a surjective homomorphism. By Theorem 4.2, B0(Rn) has a nonzero continuous
point derivation. Applying Corollary 2.11, we conclude that B0(G) has a nonzero
continuous point derivation as well. �

References

[1] W. G. Bade, P. C. Curtis, Jr., and H. G. Dales. Amenability and weak amenability for
Beurling and Lipschitz algebras. Proc. London Math. Soc. (3), 55(2):359–377, 1987.

[2] L. Baggett and K. Taylor. A sufficient condition for the complete reducibility of the regular

representation. J. Funct. Anal., 34(2):250–265, 1979.
[3] L. Baggett and K. F. Taylor. Riemann-Lebesgue subsets of Rn and representations which

vanish at infinity. J. Functional Analysis, 28(2):168–181, 1978.

[4] L. Baggett and K. F. Taylor. On asymptotic behavior of induced representations. Canad. J.
Math., 34(1):220–232, 1982.
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